			Semester: VI							
		MATH	EMATICAL MOD	ELING						
(Theory)										
(Group E: Global Elective)										
Course Code	:	18G6E16		CIE	100 Marks					
Credits: L:T:P	:	3:0:0		SEE	:					
Total Hours:39LSEE Duration:3.00										
Course Learning Objectives: The students will be able to										
3 Apply the concepts of modeling of nano liquids which have great significance in engineering practice.										
4 Demonstrate the practical importance of graph theoretic models, variational problem and dynamic programming.										
	07 Hrs									
		f a projectile, Currei	gineering problems) nt flow in electrical c nit – II	, Chemical reaction, ircuits (LCR).	Dr	ug absorption from 07 Hrs				
	ffer	ence equations, Int		te models-simple ex						
modeling through difference equations in economics, finance, population dynamics and genetics and probability theory.										
	08 Hrs									
Modeling of Nano Liquids: Nano liquids-Basic concepts, Mathematical modeling of nano liquids-Buongiorno Model (Two phase model): Relative importance of the nanoparticle transport mechanisms. Conservation equation for two phase nano liquids: The Continuity equation, Momentum equation and Energy equation.										
· · ·	08 Hrs									
Graph Theoretic Models: Mathematical modeling through graphs-Models in terms of undirected graphs, directed graphs, signed graphs and weighted graphs. Problems with engineering applications.										
Unit –V										
Unit –V 09 Hrs Variational Problem and Dynamic Programming:										
Optimization principles and techniques, Mathematical models of variational problem and dynamic programming, Problems with engineering applications.										

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explore the fundamental concepts of mathematical models arising in various fields engineering.							
CO2:	Apply the knowledge and skills of discrete and continuous models to understand various types of							
	analysis.							
CO3:	Analyze the appropriate mathematical model to solve the real world problem and to optimize the							
	solution.							
CO4:	Distinguish the overall knowledge gained to demonstrate the problems arising in many practical							
	situations.							

Refere	ence Books							
1	Mathematical Modeling, J. N. Kapur, 1 st Edition, 1998, New Age International, New Delhi, ISBN: 81-224-0006-X.							
2	Case studies in mathematical modeling, D. J. G. James and J. J. Mcdonald, 1981, Stanly Thames, Cheltonham, ISBN: 0470271779, 9780470271773.							
3	Modeling with difference equations, D. N. Burghes, M. S. Borrie, Ellis Harwood, 1981, ISBN 13: 9780853122869.							
4	Mathematical Modeling: Models, Analysis and Applications, Sandip Banerjee, 2014, Chapman and Hall/CRC Textbook, ISBN 9781439854518.							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) +30 (Q) +20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

High-3: Medium-2: Low-1